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Core research questions

• How to support the user in navigating the
information space?

• Search goals can be poorly defined. How to
understand the user’s search intent?

• Information needs are dynamic. How to adapt
with the user?



Approach

• Build practical information retrieval systems for
exploratory search using reinforcement learning

• Draw insights from user studies to understand
user behaviour and fine tune the system

• Draw insights from user behaviour to improve
user modelling (and iterate …)



Glowacka et al. IUI 2013, Kangasraasio et al. IUI 2015, Kangasraasio et al. UMAP 2016
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Athukorala et al. CIKM15, Athukorala et al. IUI16, Medlar et al. SIGIR16, Medlar et al. IUI17



Why Reinforcement Learning?

• Generic framework for building user model
over a search session

• Allows a system to balance exploration and
exploitation
– Users are not trapped in a local context bubble

based on the initial query
– Users exposed to more diverse set of data
– Harder problem than expected ….



Balancing Exploration/Exploitation

• Implicit feedback (Athukorala et al. CIKM15)
– Model the relationship between exploration rate and

number of relevant documents
– Offline – one exploration rate for population

• Explicit feedback (Medlar et al. IUI17)
– Model the relationship between exploration rate and

user experience
– Online – personalised exploration rate based on

interaction data



Balancing Exploration/Exploitation

• Too low – stuck in context bubble, too high –
results appear random … but this is subjective

• We want to model the relationship between
the exploration rate and user experience

• Novel approach based on interval regression



Study Design

• Simulations: exploration rates to show
different numbers of “exploratory” documents

• User study: MSc/PhD researchers in Machine
Learning, 5 ML queries using different
exploration rates

• Analysis: modelling combined with qualitative
analysis of user performance data



Results
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“Results are not quite
satisfactory and about very

specific definitions. I did not get
[any] understanding of what

topics are in this area”

“Results are not quite
satisfactory and about very

specific definitions. I did not get
[any] understanding of what

topics are in this area” “[results are] too scattered and
many other non-related papers”
“[results are] too scattered and
many other non-related papers”

“I went over several iterations.
Results started getting way
better [over iterations] and
overall I am very satisfied”

“I went over several iterations.
Results started getting way
better [over iterations] and
overall I am very satisfied”



Can we build a regression model to
adjust the exploration rate per user

per session?



Setting Exploration/Exploitation with
Explicit Feedback

Ordinary regression fits a model based on linear relationships
between response and explanatory variables…





Ordinary regression fits a model based on linear relationships
between response and explanatory variables, but  is a
parameter, we do not observe it!



Setting Exploration/Exploitation with
Explicit Feedback



Run experiments with random  and collect user feedback. For
some users,  was too low, for others  was too high



Setting Exploration/Exploitation with
Explicit Feedback



Don't know "true" , but if too high, "true"  will be in interval
[0, ] and if too low, "true"  will be in interval [, ∞]



Setting Exploration/Exploitation with
Explicit Feedback



Fit model over censored intervals and then make predictions as
normal!



Setting Exploration/Exploitation with
Explicit Feedback



Balancing Exploration/Exploitation
with User Experience
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More diverse

More specific

• Users state document
diversity preferences relative
to random exploration rate

• Three user interaction
variables (knowledge level,
interface time, clicked
documents)

• Prediction consistent with
user feedback in 80% of
cases (Medlar et al. IUI17)



Analysing User Behaviour in
Exploratory Search

• Building new IR systems will only get us so
far…

• Need to develop a better understanding of
user behavior to improve user modelling
– Is exploratory search different from lookup

search?
– How reliable is relevance feedback (assume users

know what they want and are consistent)



User Behaviour in
Exploratory Search vs. Lookup Search

• People behave differently when performing
exploratory and lookup searches (Athukorala et al.
JASIST16): longer queries, more scrolling, longer
search sessions, more clicks, etc.

• Differences are
predictive: simple
classifier predicts
exploratory/lookup with
81% accuracy
(Athukorala et al. IUI16).



SCIENTIFIC LITERATURE
AND ARTICLE STRUCTURE



Motivation

• We perform exploratory search
user studies on scientific literature

• Full-text retrieval has higher recall
(and lower precision) over searching
bibliographic records (title, abstract,
etc.)

• Could using abstracts for retrieval
impact experimental results?



Abstracts vs. full-text

• Bioinformatics: article sections
(e.g. results) besides abstract
provides better representations
of certain biological concepts

• Medicine: clinical decisions
based solely on abstracts results
in worse patient outcomes

• General: well-known differences
between established/emerging
fields, theoretical/applied fields,
individual fields tend to have
own style/expectations



Research Questions

• RQ1: How well do abstracts represent the full-text of a paper
in different CS subfields?

• RQ2: If there are differences between subfields, could this
impact (perceived) retrieval performance?



Data preprocessing

• 35,137 CS papers from arXiv (2007-mid 2015)

– 23% papers associated with > 1 category (40
possible author-assigned categories)

– Extracted 6.7 sections per article (SD = 2.7)

• Classify sections as abstract, introduction,
background, related work, methods, results,
discussion, conclusions and back matter

– Classified 53% of sections based on headings
that occurred at least twice (35% of headings
were unique)

– Classified 3.3 sections per article (SD = 1.2)



Representation
• Full-text and sections represented

using probabilistic topic models
– Topic model inferred from full-

text + used to predict
individual sections (100 topics)

– Multi-sections merged using
element-wise summarisation
and normalised

• Representativeness metric
– KL divergence: two discrete

probability distributions, P and
Q, "how much information is
lost when Q is used to
approximate P"

Abstract

Full-text



Abstract representativeness is
subfield-specific

• The degree to which abstracts
represent the full-text is subfield-
specific

• Higher mean KL divergence (less
representative abstract) appear to
be more theoretical...

• Lower mean KL divergence (more
representative abstract) appear to
be more applied...

• Theoretical abstracts tend to be
shorter, but KL divergence is not
correlated with abstract length (R2

= 0.003, p < 2.2 x 10-16)
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Abstract representativeness is
correlated with retrieval performance

• What is the impact on retrieval?

– Generate queries that
disproportionately favour specific
subfields (most informative features
from multi-class SVM, removed
duplicates, manually removed junk)

– 1,257 queries (33.1 per category, SD
= 14.5)

– Retrieve top-100 results using full-
text and abstracts - calculate
precision@100

• Precision@100 negatively correlated
with KL divergence (R2 = 0.38, p = 3.65
x 10-5)



Section-wise representativeness captures
domain structure

• Are these trends random, or related
to some underlying structure?

– Calculate KL divergence between all
8 sections and full-text

– Do hierarchical clustering
(complete-linkage clustering with
Euclidean distance)

• Theoretical and applied subtrees,
deeper subtrees make sense

• Obvious errors explained by high
variance (e.g. Operating Systems) or
corpus bias (e.g. Networking and
Internet, 23% associated with
Information theory as well)



Questions?


